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Abstract

Piece-wise homogeneous three-dimensional deformations in incompressible materials in finite elasticity are consid-
ered. The emergence of discontinuous strain fields in incompressible materials is studied via singularity theory. Since the
simplest singularities, including Maxwell�s sets, are the cusp singularities, cusp conditions for the total energy function
of homogeneous deformations for incompressible materials in finite elasticity will be derived, compatible with strain
jumping. The proposed method yields simple criteria for the study of discontinuous deformations in three-dimensional
problems and for any homogeneous incompressible material. Furthermore the homogeneous stress tensor is also not
restricted. Neither fictitious nor simplified constitutive relations are invoked. The theory is implemented in a simple
shearing problem.
� 2005 Published by Elsevier Ltd.
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1. Introduction

The author (Lazopoulos, in press) has recently presented a paper concerning the emergence of discon-
tinuous strain fields in finite elastostatics. The method is based upon singularity theory. The present work
extends the proposed method to the emergence of discontinuous deformations in incompressible materials.

Ericksen (1975) introduced two-phase deformations in solid materials, adopting globally stable equilib-
rium states in the class of deformations with smooth displacements but with non-smooth elastic strain
fields. Various kinds of two-phase deformations cover austenite–martensite transformations (Khatchatur-
yan, 1983), and ferroelastic materials (Salze, 1990), the twinning phenomena in crystals (Pitteri and
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Zanzotto, 2003). Truskivovsky and Zanzotto (1996) proposed multiphase equilibrium problems but with
continuous strain fields, employing terms of strain gradient into the strain energy density function. Recent
work concerning the emergence of discontinuous strain fields in incompressible materials may be found in
De Tommasi et al. (2001) and D�Ambrosio et al. (2003). Further references are included in Lazopoulos (in
press).

According to Lazopoulos (in press), Maxwell�s sets yielding multiple global minima may be found
in the neighborhoods of singularities for the total potential energy function higher or equal to the cusp.
Lazopoulos (submitted for publication) has also proposed a method for the classification of the singular-
ities of the potential energy function under homogeneous deformation and the action of multiple
constraints, see also Lazopoulos and Markatis (1994). Introducing the jumping of the strain compatibility
condition (James, 1981; Gurtin, 1983), the simple singularities (cuspoids) of total potential energy function
are classified and the cusps are located. The global minima of the total energy function are completely
defined with the help of Maxwell�s set of the cusp, describing the discontinuous strain fields with their phase
boundary. No specific strain energy density functions are needed. The method does not restrict the constant
stress tensor as far as cusp singularities of the total energy density may be probed.

The present problem of the emergence of discontinuous strain fields in incompressible elastic materials
considers smooth stress–strain relations and the non-convexities of the potential energy function, under the
incompressibility constraint, are not pre-assigned, as it is usual in these problems, but probed through
singularity theory tools. The present procedure may be extended to materials with multiple constraints.
Further no isotropy restrictions are imposed.

The theory is implemented in a simple shearing problem of Blatz and Ko (1962) material explaining the
various steps. Mathematica computerized algebra package (Wolfram, 1996), has been applied for deriving
the various formulae and computing.
2. The 1-D discontinuous strain problem

Ericksen (1975) introduced the coexistence of phases phenomena in solids discussing the globally stable
equilibrium states in a tensioned bar with non-convex strain energy density. When the stress reaches
Maxwell�s value, continuous strain fields with discontinuous derivatives (strain) may emerge. Just the same
result may be obtained with the help of Erdman–Weierstrass corner conditions (Gelfand and Fomin, 1963),
of the variational problem concerning a tensioned bar with non-convex strain energy density. Details may
be found in Lazopoulos (in press). Furthermore, the author introduces a different procedure for the study
of the non-smooth stain fields, using singularity theory. In fact, if the bar is deformed by tension stress r
and the displacement is expressed by u(x), the strain u 0(x) initially is constant. Let us assume that the stress
r0 yields constant strain u00. Increasing the stress by dr the incremental constant strain is du 0(x). If the strain
energy density of the bar is given by a cusp unfolding, i.e. by
W ðu0ðxÞÞ ¼ du04 � a0du02 þ b0du0 þ W ðu00Þ ð1Þ

with a0,b0 > 0, Maxwell�s sets, generating equal minima, are defined if the incremental stress dr0 = b0. In
this case
du0 ¼ �
ffiffiffiffiffiffiffi
2a0

3

r
. ð2Þ
Hence the strain is equal to
u0ðxÞ ¼ u00 �
ffiffiffiffiffiffiffi
2a0

3

r
. ð3Þ
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Hence, there exist regions of piece-wise constant distributed strain in the bar. Sometimes the distribution is
so fine, that it seems to be like another homogeneous deformation.
3. Mathematical formulation

Following the same formulation as in Lazopoulos (in press), we consider an anisotropic homogeneous
cube in its unstressed placement. The total energy function per unit volume of the stressed cube is
V ¼ W ðeijÞ � tijuij; ð4Þ

where tij is the first Piola–Kirchhoff stress referred to the unstressed reference placement, eij is the non-linear
Green strain tensor (Ogden, 1997) and uij the displacement gradient tensor. As it is explained in Lazopoulos
(in press), the number independent displacement gradient elements is reduced from nine to six, due to the
conservation of rotational momentum. Therefore, the total potential energy function
V ¼ V ðvi; tkÞ ¼ V ðuab; tcdÞ i ¼ 1; . . . ; 6; k ¼ 1; . . . ; 9 and a; b; c; d ¼ 1; . . . ; 3; ð5Þ

where
v1 ¼ u11; v2 ¼ u22; v3 ¼ u33; v4 ¼ u12; v5 ¼ u13; v6 ¼ u23 ð6Þ

and
t1 ¼ t11; t2 ¼ t22; t3 ¼ t33; t4 ¼ t12; t5 ¼ t13; t6 ¼ t23; t7 ¼ t21; t8 ¼ t31; t9 ¼ t32. ð7Þ

Hence, the total energy function is defined in the R6 · R9 space. Since the material is incompressible, the vi,
i = 1, . . . , 6 do not vary independently, but they are subjected to the constraint,
JðviÞ ¼ detðF Þ ¼ detðdij þ uijÞ ¼ 1. ð8Þ

It is evident the values of the entries of the matrix A depend on the equilibrium point. Studying, further, the
equilibrium of the system in the generalized six-dimensional vector space vi at the point v0

i under the action
of the nine-dimensional control parameters t0

j , we denote by
y ¼ ðvi; tjÞ ð9Þ

the 15-dimensional space of the generalized vectors vi and the control stress vectors tj. Let us consider
y0 ¼ ðv0
i ; t

0
j Þ ð10Þ
is an equilibrium point. The problem now is posed as follows:
Perturbing the parameters t0

j so that
tj ¼ t0
j þ dtj ð11Þ
with jdtjj � 1, find the new equilibrium generalized displacement gradient vector,
vi ¼ v0
i þ dvi ð12Þ
in the neighborhood of the equilibrium placement defined by the displacement gradient v0
i .

Let us point out that unique incremental displacement vector dvi characterizes the stable elastic systems.
However, the critical states are distinguished by the multiple incremental generalized displacement vector
dvi. When none dvi could be found, under the action of the incremental stress parameter dtj, equilibrium
breaks down and motion of the system is expected.

Following Lazopoulos (submitted for publication) and Lazopoulos and Markatis (1994) the equilibrium
equation is defined by the equation
Adv ¼ 0; ð13Þ
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where A is the 2 · 6 matrix,
A ¼

oV
ov1

oV
ov2

oV
ov3

oV
ov4

oV
ov5

oV
ov6

oJ
ov1

oJ
ov2

oJ
ov3

oJ
ov4

oJ
ov5

oJ
ov6

2664
3775 ð14Þ
and
dv ¼

dv1

dv2

dv3

dv4

dv5

dv6

2666666664

3777777775
. ð15Þ
Hence, Eq. (13) should be satisfied by five independent solutions dv. The space of those solutions is denoted
by a 6 · 5 matrix a. Furthermore, there exists a 1 · 2 vector a 0 = [1 p] satisfying the equation
a0A ¼ 0. ð16Þ

Both Eqs. (13) and (16) are equivalent and correspond to the equilibrium equations.
4. The branching problem

Following Lazopoulos (submitted for publication) and Lazopoulos and Markatis (1994), branching of
the equilibrium problem exists if there exists an injective linear map a1 : R1! R5 and a symmetric bilinear
map b : R1! L(R5,R6) satisfying the equation
ðBa2 þ AbÞa1 ¼ 0; ð17Þ
where B ¼ oA

ov
¼

o2V
ovkovl

� �
o2J

ovkovl

� �
26664

37775.

Further, multiplying Eq. (17) by the co-kernel a 0 and recalling the equilibrium Eq. (16) we get the sim-
plified version:
L½dx� ¼ L½aa1� ¼ a0Ba2a1 ¼ 0. ð18Þ

In this case the incremental dv equals,
dv ¼ naa1 þ oðnÞ; ð19Þ
where n is a parameter.
As it has been pointed out (Lazopoulos, in press), when the operator L is singular, branching of the equi-

librium path takes place. Of course the transitions are classified as second order according to Landau et al.
(1980). In this case no two-phase deformations are allowed. Nevertheless, the strain jumping compatibility
condition is embedded (James, 1981; Gurtin, 1983)
½F�f ¼ ðFþ � F�Þf ¼ 0; ð20Þ



K.A. Lazopoulos / International Journal of Solids and Structures 43 (2006) 4357–4369 4361
where F denotes the deformation gradient, [ ] the jumping and f two (unit) vectors defining the plane of the
phase boundary. Hence the gradient of deformation for the piece-wise homogeneous deformation is ex-
pressed by
F� ¼ F0 þ n�F1; ð21Þ

where n+ and n� are n parameters of Eq. (19), defined by the higher order terms of the governing equilib-
rium equation and the subindex zero denotes the large equilibrium placement. Furthermore, since the incre-
mental deformation gradient F1 depends completely on the kernel dx of the operator L, defined by Eq. (18),
see Lazopoulos (in press)
F1 ¼
dx1 dx4 dx5

dy1 dx2 dx6

dy2 dy3 dx3

�������
�������; ð22Þ
where dyi, i = 1,2,3 are linear combinations of dxj, j = 1, . . . , 6 solving the equations of the conservation of
the rotational momentum. Thus, the deformation jumping condition, Eq. (20), requires for non-zero f

(direction of the phase boundary)
dx1

dy1

¼ dx4

dx2

¼ dx5

dx6

;

dx1

dy2

¼ dx4

dy3

¼ dx5

dx3

.

ð23Þ
Eqs. (23) are the jumping compatibility conditions expressed exclusively by the components of the L oper-
ator. Consequently, the critical condition, interpreted into the existence of a kernel dx of the operator L,

satisfying further the deformation gradient jumping conditions, is a necessary but not sufficient condition
for the two-phase deformation. Following the procedure corresponding to the one-dimensional case, two-
phase deformations will be developed in the neighborhood of the cusp singularity, because it is the lowest
order cuspoid including Maxwell�s sets, required for globally stable transitions. Therefore the conditions for
the existence of the cusp singularity will be obtained under the action of the strain jump compatibility con-
ditions, Eqs. (23).

Proceeding to the analysis (Lazopoulos, submitted for publication; Lazopoulos and Markatis, 1994), the
cusp singularity appears when
a0Cðaa1Þ3 þ 3Ba0ðaa1Þðba2
1Þ ¼ 0; ð24Þ
where C ¼ oB

ov
.

Eq. (24) is equivalent to the existence of a multilinear function, ceL(R1,L(R1,L(R5,R6))) satisfying the
equation,
Cðaa1Þ3 þ 3Bðaa1Þðba2
1Þ þ Aca3

1 ¼ 0. ð25Þ
Likewise, Eq. (24) is equivalent to the existence of a vector â1 : R1 ! R5 satisfying the equation
Cðaa1Þ2aþ 2Bðaa1Þðb1a1Þ þ Bðba1Þ2aþ Aca2
1 þ ðBa2 þ AbÞâ1 ¼ 0. ð26Þ
The critical points satisfying Eq. (17) but failing to satisfy the Eq. (24) are classified according to Thom�s
(Gibson, 1979) classification theorem as fold points.

Thus the multilinear function c is defined by Eq. (25). Furthermore, the vector â1 is respectively defined
by Eq. (26). Likewise, the relation



4362 K.A. Lazopoulos / International Journal of Solids and Structures 43 (2006) 4357–4369
H ¼ a0fDðaa1Þ4 þ 6Cðaa1Þ2ðba2
1Þ þ Bðca3

1Þðaa1Þ þ 2Cðaa1Þ2ðaâ1Þ þ 2Bððba2
1Þ

2 þ ðba2
1Þðba1â1Þ

þ ðaja1Þðca3
1 þ ba1â1ÞÞ þ Cðaâ1Þðaa1Þ2 þ Bðaâ1Þðba2

1Þ þ Bðba1â1Þðaa1Þ þ Bðaa1Þðba1â1Þg 6¼ 0

ð27Þ
assures the singularity is not higher than the cusp. In addition, the total potential energy density in the
neighborhood of the cusp singularity is given by
bV ¼ V þ pðJ � 1Þ ¼ H
4!

n4 þ n2

2
ð _bV ik dxi dxk dtþ bV 0ik dxdxdlÞ þ nð _bV i dxi dtþ bV 0i dxi dlÞ. ð28Þ
Since the simplest (lowest) singularity including Maxwell�s sets is the cusp catastrophe (Gilmore, 1981), the
present discussion is limited to that singularity. Higher singularities include anyway Maxwell�s sets and may
be useful for many other problems with many (more than two) global minima. Indeed, the total potential
energy V is expressed in this case by
bV ¼ s4 þ as2 þ bs. ð29Þ

Just exploring the control space (a,b) of the cusp singularity, see Fig. 1, the stable regions A1 with unique
minimum of the total energy function are prescribed by the fold curve A2 where multiple local extremals are
shown up. Further, the fold curve is described by the relation
8a3 þ 27b2 ¼ 0. ð30Þ

That is, also, the critical curve for locally stable transitions. Nevertheless, the set for globally stable tran-
sitions, called Maxwell�s set, is the semi-axis in the control space with a < 0 (see Fig. 1). In that case equi-
librium states with
n ¼ �
ffiffiffiffiffiffiffiffiffiffi
� 2a

3

r
ð31Þ
yield global minima of the total energy function. Hence the deformation gradient
F ¼ F0 þ nF1 ¼ F0 �
ffiffiffiffiffiffiffiffiffiffi
� 2a

3

r
F1 ð32Þ
suffers jumping at a plane defined by the vectors f, see Eq. (20). Furthermore, the Piola–Kirchhoff stress is
defined by
TðFÞ ¼ oðW þ pðdet F� 1ÞÞ
oF

. ð33Þ
Fig. 1. Geometry of the cusp control space.
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Hence,
TðF�Þ ¼ oðW þ pðdet F� 1ÞÞ
oF

����
n¼0

þ o2ðW þ pðdet F� 1ÞÞ
oF2

����
n¼0

� n�F1

þ 1

2

o
3ðW þ pðdet F� 1ÞÞ

oF3

����
n¼0

n2F2
1 þ oðn2Þ. ð34Þ
Since
a0Badx ¼ o2ðW þ pðdet F� 1ÞÞ
oF2

����
n¼0

� F1 ¼ 0. ð35Þ
Eq. (34) reveals,
Tþ ¼ T � þ oðn2Þ. ð36Þ
Therefore, Eq. (36) covers the equilibrium requirement of the same stress vector at the two phases of the
phase boundary. In addition, the total potential energy density function is the same at both phases, because
on Maxwell�s sets
V þ ¼ V �. ð37Þ
Consequently, Maxwell�s condition see Gurtin (1983)
ðW þ pðdet F� 1ÞÞþ � ðW þ pðdet F� 1ÞÞ� ¼ T�ðFþ � F�Þ ð38Þ

is revealed.
5. Application

The present application of simple plane shear implements the theory exposed in the preceding sections.
Although the theory has not imposed any restrictions on the anisotropy of the homogeneous material, the
chosen incompressible material is a specific isotropic material with strain energy density function
W ðI1Þ ¼ aI1 þ b � I3=2
1 þ c; ð39Þ
where I1 is the first strain invariant. It is evident that the parameters a,b,c have dimensions of energy den-
sity. Just to avoid the discussion for the dimensions of the various parameters and various quantities the
problem is considered already dimensionless. Non-dimensionalization has already been performed. We
consider homogeneous deformations with displacements components uij = 0 if i or j are equal to 3. In that
case
I1 ¼ ð1þ u11Þ2 þ u2
21 þ u2

12 þ ð1þ u22Þ2; ð40Þ
J ¼ det F ¼ 1þ u11 þ u22 þ u11u22 � u12u21 ¼ 1. ð41Þ
Since W(I1) has to satisfy zero values and zero stresses at the reference placement, the following relations
are valid, see Knowles and Sternberg (1978).
W j u11¼0;u22¼0ð Þ ¼ 0;

oW
ou11

����
ðu11¼0;u22¼0Þ

¼ 0.
ð42Þ
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Hence the function W, satisfying Eqs. (42), should be
W ¼ aI1 þ
ffiffiffi
2
p

3
aI3=2

1 �
2

3
a. ð43Þ
The problem of the initial simple shear in the x1 direction will be discussed. The emergence of discontinuous
deformation gradients will be exhibited and the piece-wise constant strain field will be described. Since the
simple shear is incompressible
u11 ¼ u21 ¼ u22 ¼ 0;

u12 ¼ k
ð44Þ
prescribes the pre-critical deformation with the corresponding first Piola–Kirchhoff stress tensor elements,
t11, t22, t12, t21 .

Furthermore, the four strain components are not independent. The equation expressing the conservation
of the rotational momentum, see Lazopoulos (in press)
u11 ¼ �1þ ðt11u21 þ t12ð1þ u22Þ � t22u12Þ=t21. ð45Þ
Let us recall the density of the total potential energy is equal to
V ¼ W � t11u11 � t12u12 � t21u21 � t22u22. ð46Þ

In fact the parameters controlling the problem are the shearing k and the modulus a of the strain energy
density function. Those two parameters define the emergence of discontinuous strain fields.

Since the problem of the initial simple shear is discussed, we try to locate the critical point where the
operator L becomes singular. Recalling Eq. (45), the total energy density V depends on the three strain
components u11,u21,u22, i.e.
V ¼ V ðu12; u21; u22Þ. ð47Þ

Considering at the critical point
u12 ¼ k þ nx1;

u21 ¼ nx2;

u22 ¼ nx3

ð48Þ
the total potential energy density V(u12,u21,u22) is expanded around the strains (u12,u21,u22) = (k, 0,0 ).
Implementing the proposed theory we derive the operator
A ¼

oV
ou12

oV
ou21

oV
ou22

oJ
ou12

oJ
ou21

oJ
ou22

2664
3775 at ðu12 ¼ k; u21 ¼ 0; u22 ¼ 0Þ. ð49Þ
The space of the solutions a satisfying the equilibrium equation Aa = 0 is defined by
a ¼
0 1

1 0

x y

264
375 ð50Þ
with
x ¼ � oJ
ou21

�
oJ
ou22

¼ � S11

2S12

and y ¼ � oJ
ou12

�
oJ
ou22

¼ S22

2S12

at ðu12 ¼ k; u21 ¼ 0; u22 ¼ 0Þ. ð51Þ
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Moreover, the equilibrium equation a 0A = 0 with the cokernel a 0 = [1,p] yields at (u12 = k,u21 = 0,
u22 = 0).
A1 ¼
oV
ou12

þ p
oJ
ou12

¼ 0; ð52aÞ

A2 ¼
oV
ou21

þ p
oJ
ou21

¼ 0; ð52bÞ

A3 ¼
oV
ou22

þ p
oJ
ou22

¼ 0. ð52cÞ
The critical strains are defined when the operator L, see Eq. (18), is singular. The operator B = $A is de-
fined by
B ¼

o2A
ou2

12

o2A
ou12ou21

o2A
ou12ou22

o
2A

ou21ou12

o
2A

ou2
21

o
2A

ou21ou22

o
2A

ou22ou12

o
2A

ou22ou21

o
2A

ou2
22

266666666664

377777777775
o

2J
ou2

12

o
2J

ou12ou21

o
2J

ou12ou22

o2J
ou21ou12

o2J
ou2

21

o2J
ou21ou22

o2J
ou22ou12

o2J
ou22ou21

o2J
ou2

22

266666666664

377777777775

26666666666666666666666666664

37777777777777777777777777775

at ðu12 ¼ k; u21 ¼ 0; u22 ¼ 0Þ. ð53Þ

� �

Furthermore, the cokernel a 0 = [1,p] and the vector a1 ¼

1
z

yields the two-dimensional vector� � � �

a0Ba2a1 ¼

c1

c2

¼
0

0
. ð54Þ
Recalling Eq. (17), the multilinear operator b is defined by the equation
ðBa2 þ AbÞa1 ¼ 0 ð55Þ

with
b ¼

b1 0

0 0

0 0

264
375

b2 0

0 0

0 0

264
375

2666666664

3777777775
. ð56Þ
Then the cusp condition, Eq. (24) is computed. Hence,
Cusp ¼ a0ðCðaa1Þ3 þ 3Bðaa1Þðb1a2
1ÞÞ ¼ 0. ð57Þ
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Likewise, the involved deformation gradient jumping condition, Eq. (23), is expressed in the present
case by
u11u22 � ðu12 � kÞu21 ¼ 0. ð58Þ

Recalling Eq. (45) and expanding the strains around the initial simple shear deformation (see Eqs. (48)),
(58) is reduced to
Comp ¼ �x1x2 þ
x3ð�S22x1 þ S11x2 þ S12x3Þ

S21

¼ 0 ð59Þ
with,
x1 ¼ z; x2 ¼ 1; x3 ¼ xþ zy. ð60Þ

Let us point out that for the emergence of the strain jumping conditions (52a), (52b), (52c), (54), (57), and
(59) have to be simultaneously satisfied.

With the help of the Mathematica computerized algebra pack (Wolfram, 1996), the set of the critical
parameters (a0; p0; k0; z0; S0

11; S
0
22; S

0
12; S

0
21) satisfying conditions (52a), (52b), (52c), (54), (57), and (59), is de-

fined. Indeed, a critical state satisfying the cusp condition and compatible with strain jumping is defined by
the set
a0 ¼ 0:880; p0 ¼ �0:150; k0 ¼ 0:830; z0 ¼ 0:970;

S0
11 ¼ �0:029; S0

22 ¼ 0:184; S0
12 ¼ �0:028; S0

21 ¼ 0:181

 !
. ð61Þ
It is recall that a 0 = [1,p0] and the vector a1 ¼
1
z0

� �
are defined by the critical values. Likewise, the matrix a

is defined by Eqs. (51) and (52) with
x ¼ � S11

2S12

¼ �0:52; y ¼ S22

2S12

¼ �3:28. ð62Þ
Indeed,
a ¼
0 1

1 0

�0:52 �3:28

264
375. ð63Þ
Therefore,
x1 ¼ z ¼ 0:97; x2 ¼ 1; x3 ¼ xþ zy ¼ 2:66. ð64Þ

The elements b1,b2 of the matrix b, are defined through Eqs. (54) and (55) and are equal to
b1 ¼ �10:665; b2 ¼ 12:954. ð65Þ

The next step is the definition of the matrix c through satisfying Eq. (25). Indeed,
c ¼

�37:10 0

0 0

0 0

264
375

0 0

0 0

0 0

264
375

2666666664

3777777775

0 0

0 0

0 0

264
375

0 0

0 0

0 0

264
375

2666666664

3777777775

2666666664

3777777775
. ð66Þ
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In addition, Eq. (26) yields the vector â1 ¼
v1

v2

� �
. In fact Eq. (26) results in the two equations
� 0:81v1 þ 0:86v2 � 18:43 ¼ 0;

0:88v1 � 0:88v2 þ 20:43 ¼ 0
ð67Þ
with solution,
v1 ¼ �28:23; v2 ¼ �5:40. ð68Þ

Now H, see Eqs. (27), may be defined and it is found equal to
H ¼ 15467:9. ð69Þ

Let us, further, consider incremental values of the controlling parameters, a and k, i.e.
a ¼ a0 þ da;

k ¼ k0 þ dk.
ð70Þ
The function bV , see Eq. (28), in the present case is given by
bV ¼ 644:45n4 � ð2:44daþ 3:52dkÞn2 þ ð0:74daþ 2:93dkÞn ¼ 0. ð71Þ

Since Maxwell�s set is described when the linear for n term is zero
dk ¼ �0:252da. ð72Þ

Hence the energy function bV on the Maxwell set is given by
bV ¼ 644:45n4 � 1:554dan2. ð73Þ

The equilibrium equation yields
2:577:8n3 � 3:107dan ¼ 0 ð74Þ

with
n ¼ �0:035
ffiffiffiffiffi
da
p

and n ¼ 0. ð75Þ

Recalling the strain jumping compatibility Eq. (58), the incremental gradient deformation nF1, Eq. (35), is
defined by
nF1 ¼ n
x1x2=x3 x1

x2 x3

� �
¼ n

0:365 0:97

1 2:66

� �
. ð76Þ
Hence,
u11 ¼ 0:365n;

u12 ¼ 0:83þ 0:97n;

u21 ¼ n;

u22 ¼ 2:66n;

ð77Þ
where n is defined by Eq. (75). Besides, the direction f of the phase boundary may be defined by the
equation
F1f ¼ 0. ð78Þ
In the present case, the unit vector f directed parallel to the phase boundary is found to be equal to
f ¼ ð�0:35; 0:94ÞT. ð79Þ



4368 K.A. Lazopoulos / International Journal of Solids and Structures 43 (2006) 4357–4369
Recalling Eq. (34) which gives the first Piola–Kirchhoff stress tensor and taking into consideration Eq. (35),
the components of the first Piola–Kirchhoff stress tenor may be evaluated by
S11 ¼ �0:029þ 2:463n2;

S12 ¼ �0:028þ 3:983n2;

S21 ¼ 0:181þ 2:907n2;

S22 ¼ 0:184þ 9:130n2.

ð80Þ
Let me recall that the controlling the problem parameters are the modulus a of the stain energy density and
the shearing k. The increments of those parameters should be related through Eq. (72). Therefore Eq. (75)
yields the relation
n ¼ �0:035
ffiffiffiffiffi
da
p

¼ �0:111
ffiffiffiffiffiffiffiffiffi
�dk
p

. ð81Þ

It is evident that the increment da of the modulus a must be positive, whereas the increment dk of the shear-
ing k must be negative.

Therefore, the discontinuous deformation gradient strain field has completely been defined.
6. Conclusion

It has been found that bifurcation is a necessary condition for emergence of discontinuous strains in
(piece-wise) homogeneous deformations. Nevertheless it is not sufficient. The deformation gradient jumping
compatibility condition restricts the kernel space of the branching problem. Furthermore, globally stable
transitions, requiring multiple global minima, are shown up if the cusp condition for the total potential en-
ergy density function is satisfied. In fact the existence of Maxwell�s set, allowing for multiple global minima,
require at least the cusp condition. Consequently the branching critical condition should be combined with
the strain jumping and cusp conditions for the emergence of discontinuous strain fields. That approach is
applied to incompressible materials in the present work. The procedure is more complicated than in non-
constrained materials. The various steps have been explained in the application implementing the theory.
Three-dimensional sectionally homogeneous problems in any incompressible anisotropic material may be
studied applying the present analysis employing singularity theory. Following the present procedure, the
emergence of discontinuous strain fields may be studied for any constrained material, even with multiple
constraints.
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