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Abstract

Piece-wise homogeneous three-dimensional deformations in incompressible materials in finite elasticity are consid-
ered. The emergence of discontinuous strain fields in incompressible materials is studied via singularity theory. Since the
simplest singularities, including Maxwell’s sets, are the cusp singularities, cusp conditions for the total energy function
of homogeneous deformations for incompressible materials in finite elasticity will be derived, compatible with strain
jumping. The proposed method yields simple criteria for the study of discontinuous deformations in three-dimensional
problems and for any homogeneous incompressible material. Furthermore the homogeneous stress tensor is also not
restricted. Neither fictitious nor simplified constitutive relations are invoked. The theory is implemented in a simple
shearing problem.
© 2005 Published by Elsevier Ltd.
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1. Introduction

The author (Lazopoulos, in press) has recently presented a paper concerning the emergence of discon-
tinuous strain fields in finite elastostatics. The method is based upon singularity theory. The present work
extends the proposed method to the emergence of discontinuous deformations in incompressible materials.

Ericksen (1975) introduced two-phase deformations in solid materials, adopting globally stable equilib-
rium states in the class of deformations with smooth displacements but with non-smooth elastic strain
fields. Various kinds of two-phase deformations cover austenite-martensite transformations (Khatchatur-
yan, 1983), and ferroelastic materials (Salze, 1990), the twinning phenomena in crystals (Pitteri and
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Zanzotto, 2003). Truskivovsky and Zanzotto (1996) proposed multiphase equilibrium problems but with
continuous strain fields, employing terms of strain gradient into the strain energy density function. Recent
work concerning the emergence of discontinuous strain fields in incompressible materials may be found in
De Tommasi et al. (2001) and D’Ambrosio et al. (2003). Further references are included in Lazopoulos (in
press).

According to Lazopoulos (in press), Maxwell’s sets yielding multiple global minima may be found
in the neighborhoods of singularities for the total potential energy function higher or equal to the cusp.
Lazopoulos (submitted for publication) has also proposed a method for the classification of the singular-
ities of the potential energy function under homogeneous deformation and the action of multiple
constraints, see also Lazopoulos and Markatis (1994). Introducing the jumping of the strain compatibility
condition (James, 1981; Gurtin, 1983), the simple singularities (cuspoids) of total potential energy function
are classified and the cusps are located. The global minima of the total energy function are completely
defined with the help of Maxwell’s set of the cusp, describing the discontinuous strain fields with their phase
boundary. No specific strain energy density functions are needed. The method does not restrict the constant
stress tensor as far as cusp singularities of the total energy density may be probed.

The present problem of the emergence of discontinuous strain fields in incompressible elastic materials
considers smooth stress—strain relations and the non-convexities of the potential energy function, under the
incompressibility constraint, are not pre-assigned, as it is usual in these problems, but probed through
singularity theory tools. The present procedure may be extended to materials with multiple constraints.
Further no isotropy restrictions are imposed.

The theory is implemented in a simple shearing problem of Blatz and Ko (1962) material explaining the
various steps. Mathematica computerized algebra package (Wolfram, 1996), has been applied for deriving
the various formulae and computing.

2. The 1-D discontinuous strain problem

Ericksen (1975) introduced the coexistence of phases phenomena in solids discussing the globally stable
equilibrium states in a tensioned bar with non-convex strain energy density. When the stress reaches
Maxwell’s value, continuous strain fields with discontinuous derivatives (strain) may emerge. Just the same
result may be obtained with the help of Erdman—Weierstrass corner conditions (Gelfand and Fomin, 1963),
of the variational problem concerning a tensioned bar with non-convex strain energy density. Details may
be found in Lazopoulos (in press). Furthermore, the author introduces a different procedure for the study
of the non-smooth stain fields, using singularity theory. In fact, if the bar is deformed by tension stress o
and the displacement is expressed by u(x), the strain u/(x) initially is constant. Let us assume that the stress
0y yields constant strain ;. Increasing the stress by do the incremental constant strain is du'(x). If the strain
energy density of the bar is given by a cusp unfolding, i.e. by

W (i (x)) = du™ — apdu + bodu/ + W (u}) (1)

with ag, by > 0, Maxwell’s sets, generating equal minima, are defined if the incremental stress dog = by. In
this case

M:hﬁ% )

Hence the strain is equal to

w@_%if%. (3)
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Hence, there exist regions of piece-wise constant distributed strain in the bar. Sometimes the distribution is
so fine, that it seems to be like another homogeneous deformation.

3. Mathematical formulation

Following the same formulation as in Lazopoulos (in press), we consider an anisotropic homogeneous
cube in its unstressed placement. The total energy function per unit volume of the stressed cube is

V= W(ey) — tyuij, (4)
where ¢;; is the first Piola—Kirchhoff stress referred to the unstressed reference placement, e;; is the non-linear
Green strain tensor (Ogden, 1997) and u;; the displacement gradient tensor. As it is explained in Lazopoulos

(in press), the number independent displacement gradient elements is reduced from nine to six, due to the
conservation of rotational momentum. Therefore, the total potential energy function

V=V(,ty) =V(uwp,tq) i=1,...,6, k=1,...,9 and a,b,c,d=1,...,3, (5)
where

Uy = Uy, Uz =Up, U3 =U33, U4=1Up, Us=U3, U= Uy (6)
and

hh=1ty, h=tln, B=1I3, W=tn I5="13 =13 =1, =1, I=In (7)

Hence, the total energy function is defined in the R® x R’ space. Since the material is incompressible, the v;,
i=1,...,6 do not vary independently, but they are subjected to the constraint,

It is evident the values of the entries of the matrix A depend on the equilibrium point. Studying, further, the

equilibrium of the system in the generalized six-dimensional vector space v; at the point ¢? under the action
of the nine-dimensional control parameters tj’, we denote by

y= (Uiv tj) (9)
the 15-dimensional space of the generalized vectors v; and the control stress vectors #;. Let us consider
Y = (), 1) (10)

is an equilibrium point. The problem now is posed as follows:
Perturbing the parameters t? so that

0
t=10+d (11)
with |d#;| < 1, find the new equilibrium generalized displacement gradient vector,
0
v; =v; +dy; (12)
in the neighborhood of the equilibrium placement defined by the displacement gradient .

Let us point out that unique incremental displacement vector dv; characterizes the stable elastic systems.
However, the critical states are distinguished by the multiple incremental generalized displacement vector
dv;. When none dv; could be found, under the action of the incremental stress parameter d¢;, equilibrium
breaks down and motion of the system is expected.

Following Lazopoulos (submitted for publication) and Lazopoulos and Markatis (1994) the equilibrium
equation is defined by the equation

Advy = 0, (13)
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where A is the 2 X 6 matrix,

oV ov ov ov orv or
aTJl 672 673 Ovy Ovs Ovs
oJ oJ oJ oJ oJ oJ
du, Ov, Ovs vy Ovs Qug
and

Fdoy T
dov,
dovs
dv = doe | (15)
dos
dws |

Hence, Eq. (13) should be satisfied by five independent solutions dv. The space of those solutions is denoted
by a 6 x 5 matrix a. Furthermore, there exists a 1 x 2 vector a’ =[1 p] satisfying the equation

a'A = 0. (16)

Both Egs. (13) and (16) are equivalent and correspond to the equilibrium equations.

4. The branching problem

Following Lazopoulos (submitted for publication) and Lazopoulos and Markatis (1994), branching of
the equilibrium problem exists if there exists an injective linear map a; : R' — R> and a symmetric bilinear
map b: R' — L(R>,R®) satisfying the equation

(Ba® 4 Ab)a; = 0, (17)
o]
0A 0v,0v
where B = == 6sz !
Gvk(‘)vl
Further, multiplying Eq. (17) by the co-kernel a’ and recalling the equilibrium Eq. (16) we get the sim-
plified version:

L[dx] = L[aa,] = a'Ba’a, = 0. (18)

In this case the incremental dv equals,
dv = £aa; + o(9), (19)

where & is a parameter.

As it has been pointed out (Lazopoulos, in press), when the operator L is singular, branching of the equi-
librium path takes place. Of course the transitions are classified as second order according to Landau et al.
(1980). In this case no two-phase deformations are allowed. Nevertheless, the strain jumping compatibility
condition is embedded (James, 1981; Gurtin, 1983)

[Fjf = (F" —F)f =0, (20)
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where F denotes the deformation gradient, [ ]the jumping and f two (unit) vectors defining the plane of the
phase boundary. Hence the gradient of deformation for the piece-wise homogeneous deformation is ex-
pressed by

F* = F, + ¢*Fy, (21)

where ¢ and ¢ are ¢ parameters of Eq. (19), defined by the higher order terms of the governing equilib-
rium equation and the subindex zero denotes the large equilibrium placement. Furthermore, since the incre-
mental deformation gradient F; depends completely on the kernel dx of the operator L, defined by Eq. (18),
see Lazopoulos (in press)

dx; dxs dxs
F] = dyl dJCZ de ) (22)
dy, dy; dx;
where dy;, i = 1,2,3 are linear combinations of dx;, j=1,...,6 solving the equations of the conservation of

the rotational momentum. Thus, the deformation jumping condition, Eq. (20), requires for non-zero f
(direction of the phase boundary)

dv _dx _ dys
dylideidX(,,
dn _du _dis >
dy, dy, dxs’

Eqgs. (23) are the jumping compatibility conditions expressed exclusively by the components of the L oper-
ator. Consequently, the critical condition, interpreted into the existence of a kernel dx of the operator L,
satisfying further the deformation gradient jumping conditions, is a necessary but not sufficient condition
for the two-phase deformation. Following the procedure corresponding to the one-dimensional case, two-
phase deformations will be developed in the neighborhood of the cusp singularity, because it is the lowest
order cuspoid including Maxwell’s sets, required for globally stable transitions. Therefore the conditions for
the existence of the cusp singularity will be obtained under the action of the strain jump compatibility con-
ditions, Egs. (23).

Proceeding to the analysis (Lazopoulos, submitted for publication; Lazopoulos and Markatis, 1994), the
cusp singularity appears when

a'C(aa;)’ + 3Ba’(aa;)(ba?) = 0, (24)
where C = a—B
ov

Eq. (24) is equivalent to the existence of a multilinear function, ceL(R',L(R',L(R’ R%))) satisfying the
equation,

C(aa;)’ + 3B(aa;)(ba’) + Aca; = 0. (25)
Likewise, Eq. (24) is equivalent to the existence of a vector a; : R' — R’ satisfying the equation
C(aa;)’a + 2B(aa;)(bya;) + B(ba;)’a + Aca’ + (Ba® + Ab)a; = 0. (26)

The critical points satisfying Eq. (17) but failing to satisfy the Eq. (24) are classified according to Thom’s
(Gibson, 1979) classification theorem as fold points.

Thus the multilinear function ¢ is defined by Eq. (25). Furthermore, the vector a; is respectively defined
by Eq. (26). Likewise, the relation
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© = a'{D(aa;)* + 6C(aa,)’(ba}) + B(ca})(aa;) + 2C(aa,)’(ad;) + 2B((ba})’ + (ba})(ba;a;)
+ (ajar)(caj + baja;)) + C(aa,)(aa;)” + B(aa,)(ba;) + B(ba;a;)(aa;) + B(aa;)(ba;a;)} # 0

(27)
assures the singularity is not higher than the cusp. In addition, the total potential energy density in the
neighborhood of the cusp singularity is given by
52
2
Since the simplest (lowest) singularity including Maxwell’s sets is the cusp catastrophe (Gilmore, 1981), the
present discussion is limited to that singularity. Higher singularities include anyway Maxwell’s sets and may

be useful for many other problems with many (more than two) global minima. Indeed, the total potential
energy V is expressed in this case by

V =5+ as® + bs. (29)

~ ® B —~ A ~1
P =V pl = 1) = 58 5 (Padnddt+ 7 drdxdw) + {7, dude + 7 dxdp). (28)

Just exploring the control space (a,b) of the cusp singularity, see Fig. 1, the stable regions 4; with unique
minimum of the total energy function are prescribed by the fold curve 4, where multiple local extremals are
shown up. Further, the fold curve is described by the relation

8a® +27b* = 0. (30)

That is, also, the critical curve for locally stable transitions. Nevertheless, the set for globally stable tran-
sitions, called Maxwell’s set, is the semi-axis in the control space with @ <0 (see Fig. 1). In that case equi-
librium states with

= i@ 31)

yield global minima of the total energy function. Hence the deformation gradient

F:F°+§F1:F°i\/f%aFl (32)

suffers jumping at a plane defined by the vectors f, see Eq. (20). Furthermore, the Piola—Kirchhoff stress is
defined by

O(W + p(detF — 1))

TF) = OF

(33)

Fig. 1. Geometry of the cusp control space.
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Hence,
O(W + p(detF — 1)) O*(W + p(detF — 1)) -
T(F%) = - EEF
( ) oF =0 + aFZ =0 < 1
1 (W +p(detF —1)| ., 5
+ 5 o gzoé Fy + O(é ) (34)
Since
W F-1
W Badx — L PR D) g (35)
aF =0
Eq. (34) reveals,
T =T +0o(&). (36)

Therefore, Eq. (36) covers the equilibrium requirement of the same stress vector at the two phases of the
phase boundary. In addition, the total potential energy density function is the same at both phases, because
on Maxwell’s sets

yt=v". (37)
Consequently, Maxwell’s condition see Gurtin (1983)
(W + p(detF — 1))" — (W + p(detF —1))” =T*(F" — F") (38)

is revealed.

5. Application

The present application of simple plane shear implements the theory exposed in the preceding sections.
Although the theory has not imposed any restrictions on the anisotropy of the homogeneous material, the
chosen incompressible material is a specific isotropic material with strain energy density function

W) =al,+b-1I" +c, (39)

where /; is the first strain invariant. It is evident that the parameters a, b, ¢ have dimensions of energy den-
sity. Just to avoid the discussion for the dimensions of the various parameters and various quantities the
problem is considered already dimensionless. Non-dimensionalization has already been performed. We
consider homogeneous deformations with displacements components u; = 0 if 7 or j are equal to 3. In that
case

L= (14 un)’ + 5, +upy + (1 +un)’, (40)

J =detF = 1—|-u1] + Uy + U U — Uy =1. (41)
Since W(I,) has to satisfy zero values and zero stresses at the reference placement, the following relations
are valid, see Knowles and Sternberg (1978).

W| (=013 =0) = 0,

ow o (42)

Quyy (u11=0,u=0)
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Hence the function W, satisfying Eqgs. (42), should be

2 2
W =al, —|—§al?/2 -3

The problem of the initial simple shear in the x; direction will be discussed. The emergence of discontinuous
deformation gradients will be exhibited and the piece-wise constant strain field will be described. Since the
simple shear is incompressible

(43)

un = uy =up =0, (44)
Upp = k
prescribes the pre-critical deformation with the corresponding first Piola—Kirchhoff stress tensor elements,
fi1, 022,12, I21
Furthermore, the four strain components are not independent. The equation expressing the conservation
of the rotational momentum, see Lazopoulos (in press)

un = —1 4 (tnua + tio(1 + uxn) — toun) /1. (45)
Let us recall the density of the total potential energy is equal to
V=W — tijuyy — tipury — by — tous). (46)

In fact the parameters controlling the problem are the shearing k and the modulus « of the strain energy
density function. Those two parameters define the emergence of discontinuous strain fields.

Since the problem of the initial simple shear is discussed, we try to locate the critical point where the
operator L becomes singular. Recalling Eq. (45), the total energy density V" depends on the three strain
components Uy, Uz, Uz, le.

V =V (u, tz1,un). (47)
Considering at the critical point

upy =k + ¢xi,

uy = Exy, (48)

uyp = Ex3

the total potential energy density V(uis,usy,up;) is expanded around the strains (uy,,us1,42;) = (k,0,0 ).
Implementing the proposed theory we derive the operator

o orv or
0 0 0
A= g}z aujl é’ljz at (u12 = k’ Uy = 0, Uy = 0) (49)

6u12 6u21 6u22

The space of the solutions a satisfying the equilibrium equation Aa = 0 is defined by

0 1
a=[1 0 (50)
Xy
with
9 0 0 0
X = ——J —J_ S“ and y= ——J —J_ S22 at (Ll]z = k, Uy = 0,1422 = 0) (51)

dup/ duy 28, Oupy/ Ouxn 281
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Moreover, the equilibrium equation a’A =0 with the cokernel a’ =[1,p] yields at (u, = k,up; =0,
Uy = O)

or oJ
A =—+p—=0 52
1 aulz +pau]2 ) ( a)
ov oJ
Ay=—+p—=0 52b
2 6u21 pale] ’ ( )
ov oJ
Ay =— —=0. 2
3 i p6u22 0 (52¢)

The critical strains are defined when the operator L, see Eq. (18), is singular. The operator B = VA is de-
fined by

([ o4 0’4 o4 7
aufz 6u126u21 au126u22
0’4 0’4 0’4
6u216u12 @ugl 6u216u22
7’4 o’ A
_6u226u12 6u226u21 6u§2 |
B = i _ at (u12 = k, Uy = 0, Uy = 0) (53)
7 o’ o’
Gu%z 6u126u21 6u126u22
o’ 7 o°J
6u216u12 au%l 6u216u22
o o 2
L _6u226u12 6u226u21 614%2 _

Furthermore, the cokernel a’ =[1,p] and the vector a; = {H yields the two-dimensional vector

a'Ba’a; = Pl} = {O} (54)
Y2 0
Recalling Eq. (17), the multilinear operator b is defined by the equation
(Ba® + Ab)a; = 0 (55)
with
r[pl 077
0 0
b= :bo2 g: (56)
0 0
LLO 0]

Then the cusp condition, Eq. (24) is computed. Hence,
Cusp = a'(C(aa;)’ + 3B(aa,)(bsal)) = 0. (57)
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Likewise, the involved deformation gradient jumping condition, Eq. (23), is expressed in the present
case by

Upuyp — (ulz - k)u21 =0. (58)

Recalling Eq. (45) and expanding the strains around the initial simple shear deformation (see Egs. (48)),
(58) is reduced to

x3(—=Snx1 + Suxz + Siox3)
SH1

Comp = —xix; + =0 (59)

with,

x1=z, xx=1, x3=x+zy. (60)
Let us point out that for the emergence of the strain jumping conditions (52a), (52b), (52¢), (54), (57), and
(59) have to be simultaneously satisfied.

With the help of the Mathematica computerized algebra pack (Wolfram, 1996), the set of the critical
parameters (a’, p°, k°,2°, 8,,5%,,5%,,83)) satisfying conditions (52a), (52b), (52¢), (54), (57), and (59), is de-
fined. Indeed, a critical state satisfying the cusp condition and compatible with strain jumping is defined by
the set

<a0 —0.880, p°=—0.150, K°=0.830, z°=0.970, )

61
SY, =-0.029, 59, =0.184, S% =-0.028 S5 =0.181 (61)

It is recall that a’ = [1,p°] and the vector a, = [zlo} are defined by the critical values. Likewise, the matrix a
is defined by Egs. (51) and (52) with

S11 S22
=——=-0.52 =_——=-3.28. 62
Y=o T (62)
Indeed,
0 1
a= 1 0 . (63)
—-0.52 —3.28
Therefore,
x1=2z=097, x,=1, x3=x+2zy=2.66. (64)
The elements by, b, of the matrix b, are defined through Egs. (54) and (55) and are equal to
by = —10.665, by, = 12.954. (65)
The next step is the definition of the matrix ¢ through satisfying Eq. (25). Indeed,
rr[—=3710 077 [0 0777
0 0 0 0
0 0 0 0
c= - : (66)
0 0 0 0
0 0 0 0
L L 0 0 1 L0 0f 1]
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In addition, Eq. (26) yields the vector a; = {Zl } . In fact Eq. (26) results in the two equations
2
—0.81v; + 0.86v, — 18.43 =0,

0.88v; — 0.88v, +20.43 =0 (67)
with solution,

vy = —28.23, v, = —5.40. (68)
Now 0, see Egs. (27), may be defined and it is found equal to

O = 15467.9. (69)
Let us, further, consider incremental values of the controlling parameters, a and £, i.e.

_ 0

e ™
The function 7, see Eq. (28), in the present case is given by

V = 644.458% — (2.448a + 3.525k) % + (0.748a + 2.938k)¢ = 0. (71)
Since Maxwell’s set is described when the linear for ¢ term is zero

S8k = —0.252%a. (72)
Hence the energy function ¥ on the Maxwell set is given by

V = 644.455* — 1.5545a&°. (73)
The equilibrium equation yields

2.577.88 —3.1078a¢ =0 (74)
with

¢=40.035V8a and ¢=0. (75)

Recalling the strain jumping compatibility Eq. (58), the incremental gradient deformation ¢Fy, Eq. (35), is
defined by

X1X2/x3 X 0.365 0.97
éF‘:f[ 1;2/3 xj: { 1 2.66} (76)
Hence,
u; = 0.365¢,
upp = 0.83 4+ 0.97¢, (77)
uy = ¢,
uy = 2.66&

where ¢ is defined by Eq. (75). Besides, the direction f of the phase boundary may be defined by the
equation

Fif =0. (78)
In the present case, the unit vector f directed parallel to the phase boundary is found to be equal to

f=(—0.35 094)" (79)
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Recalling Eq. (34) which gives the first Piola—Kirchhoff stress tensor and taking into consideration Eq. (35),
the components of the first Piola—Kirchhoff stress tenor may be evaluated by

S11 = —0.029 + 2.463&%,
S1, = —0.028 + 3.983¢%,
Sy = 0.181 +2.907&,
Sy = 0.184 +9.130&°.

(80)

Let me recall that the controlling the problem parameters are the modulus a of the stain energy density and
the shearing k. The increments of those parameters should be related through Eq. (72). Therefore Eq. (75)
yields the relation

&= +0.035V8a = £0.111V/—5k. (81)

It is evident that the increment da of the modulus ¢ must be positive, whereas the increment &k of the shear-
ing k must be negative.
Therefore, the discontinuous deformation gradient strain field has completely been defined.

6. Conclusion

It has been found that bifurcation is a necessary condition for emergence of discontinuous strains in
(piece-wise) homogeneous deformations. Nevertheless it is not sufficient. The deformation gradient jumping
compatibility condition restricts the kernel space of the branching problem. Furthermore, globally stable
transitions, requiring multiple global minima, are shown up if the cusp condition for the total potential en-
ergy density function is satisfied. In fact the existence of Maxwell’s set, allowing for multiple global minima,
require at least the cusp condition. Consequently the branching critical condition should be combined with
the strain jumping and cusp conditions for the emergence of discontinuous strain fields. That approach is
applied to incompressible materials in the present work. The procedure is more complicated than in non-
constrained materials. The various steps have been explained in the application implementing the theory.
Three-dimensional sectionally homogeneous problems in any incompressible anisotropic material may be
studied applying the present analysis employing singularity theory. Following the present procedure, the
emergence of discontinuous strain fields may be studied for any constrained material, even with multiple
constraints.
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